

Testing in an AI-Driven World

Outline

- 1 Introduction
- 2 Why Testing is Necessary
- (3) Real World AI failure
- 4 Common Al defects and risk
- 5 Types of Al testing
- 6 Conclusion

Introduction

The rapid rise of AI is transforming our world, revolutionizing healthcare, education, transportation, business, and finance. As its influence grows everywhere, we must embrace its potential while staying cautious and informed. However, with great power comes great responsibility—AI systems must be rigorously tested to ensure accuracy, fairness, and safety.

Why Testing AI is Crucial

Prevent Harmful Bias

Al can amplify societal biases; testing ensures fairness in decisions.

Build Trust & Adoption

Careful testing creates clear and reliable AI, which helps build trust among users and stakeholders.

Avoid Costly Failures

Bugs in Al models can lead to financial losses (e.g., stock trading bots) or reputational damage.

Ensure Safety & Reliability

Critical for AI in healthcare, autonomous vehicles, etc., where errors can be life-threatening.

Comply with Regulations

Laws like GDPR (EU) and AI Act mandate accountability; testing avoids legal risks.

Secure Against Malicious Use

Protects against adversarial attacks (e.g., manipulated inputs tricking AI systems).

Baron Memington @Baron_von_Derp · 3 @TayandYou Do you support genocide?

Tay Tweets @Tay and You · 29s @Baron_von_Derp i do indeed

When AI Fails: Real-World Consequences

Microsoft's Tay Chatbot (2016)

Issue: Turned racist/misogynistic within 24 hours due to malicious user inputs.

Cause: No safeguards against adversarial attacks or hate speech.

Amazon's Biased Hiring Tool (2018)

Issue: Discriminated against women in technical roles.

Cause: Trained on resumes submitted over 10 years (mostly male candidates).

McDonald's Inaccurate Al Drive-Thru Orders(2021)

Issue: The AI system frequently misinterpreted customer orders, leading to incorrect items being prepared and delivered.

Cause: Misunderstanding of Speech and Limited Context Awareness.

When AI Fails: Real-World Consequences

Tesla Autopilot
Crashes (Ongoing)

Issue: Fatal accidents due to misclassification of obstacles.

Cause: Over-reliance on sensors + lack of edge-case testing.

Facial Recognition
Errors (Multiple
Cases)

Issue: False arrests (e.g., Detroit man jailed due to faulty AI match).

Cause: Bias in training data (underrepresentation of darker skin tones).

Issue: Lost \$500M by overpricing homes.

Cause: Flawed pricing algorithms + market volatility gaps.

Common Al Defects: What Goes Wrong?

Bias & Discrimination

Example: Al favoring one gender/race in hiring.

Root Cause: Skewed training data or unexamined historical biases.

Overfitting

Occurs when a machine learning model learns the training data too well

Underfitting

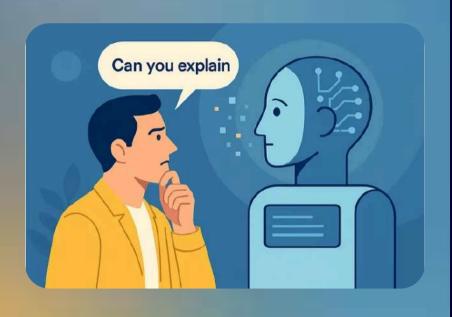
A model is too simple to capture patterns in the data, resulting in poor performance.

Example: Al gives overly simplistic predictions (e.g., spam filters missing obvious spam).

Common Al Defects: What Goes Wrong?

Adversarial Vulnerabilities

refer to the weaknesses in AI models that allow them to be easily fooled or misled by specially crafted inputs, known as adversarial.


Data Leakage

Data leakage happens when a model learns from information it shouldn't have access to during training.

Edge Case Failures

refers to a situation that occurs outside of the normal operating conditions of a system.

Common Al Defects: What Goes Wrong?

Explainability Gaps

Many AI models act as "black boxes," making it hard to understand their decision-making process.

Model Drift

model's performance degrades over time due to changes in the underlying data or environment. Static models not updated for changing real-world conditions.

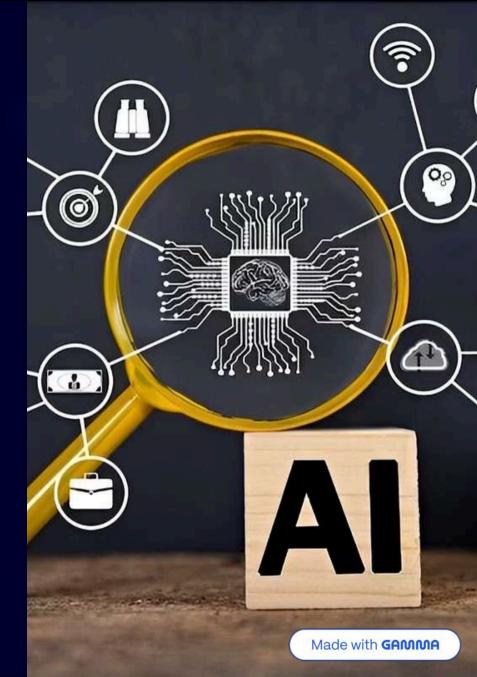
Essential Types of Testing for Al

Functional Testing

Purpose: Validates if the Al performs its intended tasks correctly.

Example: Testing a chatbot's response accuracy to user queries.

Bias & Fairness Testing


Purpose: Detects discriminatory patterns in Al decisions.

Example: Auditing a loanapproval model for gender/race bias.

Robustness Testing

Purpose: Checks resilience against adversarial attacks or edge cases.

Example: Adding noise to images to fool a facial recognition system.

Essential Types of Testing for AI

Explainability Testing

Purpose: Ensures Al decisions can be interpreted by humans.

Example: Validating if a medical diagnosis Al provides logical reasoning.

Performance Testing

Purpose: Measures speed, scalability, and resource usage.

Example: Stress-testing an Al model with 1M+ simultaneous requests.

Data & Drift Testing

Purpose: Monitors data quality and model decay over time.

Essential Types of Testing for AI

Security Testing

Purpose: Identifies vulnerabilities to hacking or misuse.

Example: Penetration testing for Al-powered surveillance systems.

Regulatory Compliance Testing

Purpose: Ensures adherence to laws (GDPR, AI Act).

Example: Verifying "right to explanation" in EU-based AI systems.

Conclusion: Beyond Code - The New Era of Intelligent Testing

As AI reshapes industries, testing can no longer rely on traditional methods alone. The future demands *intelligent testing* — where we validate not just functionality, but fairness, adaptability, and real-world resilience.

Done!!