Agenda

e Welcome & The Agentic Future
e Introducing Google ADK & A2A: Solving Key Challenges
e Google ADK: Build Intelligent Agents

o Core Concepts & Features

o Quick Demo: Anatomy of an ADK Agent
e A2A Protocol: Enable Agent Collaboration

o Core Concepts & How it Works

o Quick Demo: A2A Interaction Snippet
e Synergy: ADK with A2A & Real-World Use Cases \ A A J
e Getting Started & Your Next Steps

The Rise of Al Agents O OO

What are Al Agents?
More Than Just Code

Autonomous Entities: Operate
independently to achieve goals.

Perceive: Understand their environment
through data, sensors, or user input.

Reason: Process information, make
decisions, and plan actions using Al
models (especially LLMs).

Act: Execute actions, interact with
systems, tools, or other agents.

Why the Surge Now?
The LLM Revolution

Advanced large language models provide
unprecedented reasoning, language

understanding, and generation capabilities,

forming the "brains” of modern agents.

The Vision:
Collaborative Intelligence

Moving beyond single, monolithic Al
systems to dynamic networks of
specialized agents working together, much
like human teams.

Key Challenges in
Agent Development

Building Robust Agents:

Crafting reliable agent logic, ensuring
consistent behavior, and managing

complex internal states can be difficult.

Orchestration:

Coordinating multiple agents to
perform a complex task requires clear
workflows, data passing, and error
handling across agents.

Interoperability:

How do agents built with different tools, by
different teams, or even different
companies, talk to each other effectively?
Lack of standards creates silos.

Control & Safety:

Ensuring agents operate within defined
boundaries, use tools responsibly, and can
be monitored and debugged is crucial for
trust and adoption.

Google's Solution: A Powerful Duo

Google Agent Development Kit (ADK):
Your Toolkit to BUILD

An open-source Python framework designed to simplify
the creation, testing, and management of Al agents and
multi-agent systems.

Purpose: Provides structure for agent logic, easy tool
integration, robust orchestration capabilities, and
pathways for deployment. Empowers developers with
control.

CCO %

8 Q ”

‘ | |
Agent-to-Agent (A2A) Protocol:
Your Bridge to CONNECT

An open, standardized communication protocol that
defines how agents interact.

Purpose: Enables diverse Al agents — whether built with
ADK, other frameworks, or custom code - to discover
each other's capabilities, exchange information securely,
and coordinate actions. Fosters an open ecosystem.

What is ADK?
Your Agent Building Toolkit

Open-Source & Python-Native:
Built for Python developers, offering a familiar and flexible environment.

Core Philosophy: The "Agent Triangle"

e Instructions (Goal): Clearly define what your agent should do, its personality, and
its objectives using natural language.

e Tools (Capabilities): Equip agents with functions (Python code, APIs) to interact
with the external world, fetch data, or perform specific actions.

e Model (Brain): Leverages the power of LLMs (like Gemini or your model of choice)
for reasoning, planning, and language understanding to interpret instructions and
use tools.

Goal: To streamline development from simple, single-purpose agents to complex,
orchestrated multi-agent systems with built-in best practices.

\

4

ADK Key Features

Agent Types for Different Needs:

LLMAgent: For agents driven by LLM reasoning.
SequentialAgent, ParallelAgent, LoopAgent: For orchestrating
workflows of multiple agents.

e CustomAgent: For more specialized agent behaviors.

Powerful Tool Integration:

e Use built-in tools like Google Search, Code Execution with
minimal setup.
Easily create custom Python tools to give agents unique skills.
LongRunningFunctionTool handles tools that perform complex,
time-consuming tasks and provide progress updates.

Flexible Orchestration:

e Design how multiple agents collaborate: assign a "planner” agent
to delegate tasks to specialized "worker" agents.

Memory & Context Management:

e Enables agents to remember previous
interactions and maintain context for coherent
conversations and actions.

Observability & Debugging:

e Built-in logging helps you trace agent
behavior, tool usage, and LLM interactions,
making debugging easier.

Deployment Pathways:

e Develop locally, containerize with Docker, and
deploy to cloud environments like Google
Cloud Run or Vertex Al Agent Engine.

from adk.agents import LLMAgent
from adk.tools import tool # Use the @tool decorator

@tool
def get_weather(city: str) -> str:
"""Gets the current weather for a specified city."""
In a real scenario, this would call a weather API
if city.lower() == "london":
return "It's likely cloudy with a chance of rain in London."
return f"Weather data for {city} is not available with this mock tool."

weather_assistant = LLMAgent(
llm="gemini-1.5-flash", # Specify the LLM you want to use

Key Takeaways from the Code:

@tool decorator: Simplifies making
Python functions available to the
agent.

instructions: Shapes the agent's

behavior and how it uses tools.
tools list: Makes specific capabilities
accessible to the LLM.

ADK handles the underlying
complexity of when and how the
LLM calls the tool.

instructions="You are a helpful weather assistant. Use the get _weather tool to answer questions about weather.",

tools=[get_weather] # Register the tool with the agent

query = "What's the weather like in London?"
response = weather_assistant.run(query)
print(f"User: {query}\nAgent: {response}")

Quick Demo/Walkthrough

“Let's look at a very simple ADK agent in action. Here's a Python script similar to
what we just saw, defining a weather_assistant.”

“When | run this and ask, 'What's the weather like in London?’, the ADK framework,
powered by the Gemini model, understands it needs to use the get_weather tool."
(Run the script with the query).

"You can see the output where the agent has (conceptually) called the tool and
formulated a response. If we look at the logs ADK provides (show snippet if
possible), we could trace this tool invocation."

-

J

A protocol

A2A vs MCP

sub-agents

Agent Framework

[LLM

Agentic Application

/resources

/tools

MCP Server

A2A vs MCP

Contrasts between MCP and A2A

Feature

Anthropic's MCP (Model Context
Protocol)

Google's A2A (Agent-to-Agent
Protocol)

Primary
Focus

Formatting interaction with an LLM

Communication between
independent agent systems

Scope

Internal: Application <-> Anthropic
LLM Interface

External: Agent System <-> Agent
System Interface

Purpose

Structure context & tools for model
processing

Enable inter-system interoperability &
collaboration

Interaction

Between application logic and the
core language model

Between distinct, autonomous agent
applications

Analogy

The specific grammar & format
needed to talk to one expert

A universal translator & diplomatic
protocol between nations

Example

PAAS structuring data for its Claude
model's API call

PAAS sending a standardized booking
request to RRAS

How A2A Works:
A Simplified Interaction Flow i

Discovery (Finding an Agent): \ /

e The Client Agent finds the Agent Card of a Remote Agent (e.g., from a registry, or a known URL).

Capability Assessment (Can it do the job?): NY\

e The Client Agent inspects the Agent Card to understand the Remote Agent's capabilities and
authentication requirements.

Task Request (Sending the work):

The Client Agent constructs a JSON-RPC request (the "task") according to A2A specifications.
It sends this request via HTTP POST to the Remote Agent's designated A2A endpoint (e.g., \ A A)

/tasks/send).
e Requestincludes: task ID, method (capability), parameters, and any necessary input data.

A2A Core Concepts

1. Agent Card (agent.json): The Agent's Digital Passport 3. Standardized Message Structures:
e A JSON file that an agent publishes to describe itself. e Primarily uses JSON-RPC 2.0 for request and response
Contains: payloads, ensuring clarity and consistency.

o Identity: Unique ID, name, description. e Supports various content types within messages for

o Capabilities: List of tasks/skills the agent can perform multimodal interactions (text, files initially; extensible to
(e.g., "summarize_text", “translate_document"). audio/video).

o Endpoints: URLs for key A2A operations (e.g.,
/tasks/send to submit a task). 4. Client & Remote Agent Roles:

o Authentication: Specifies required security schemes

(e.g., OAuth 2.0 Bearer Token, APl Key) e Client Agent: The agent that initiates a task request to

another agent.
2. Task Lifecycle Management: e Remote Agent (or Server Agent): The agent that receives
and processes the task request. (Roles can be dynamic).
e Tasks progress through well-defined states: submitted ->
working -> (optional input_required if more info needed) ->
completed / failed / cancelled. This allows for tracking and
robust error handling.

How A2A Works:
A Simplified Interaction Flow i

Authentication & Authorization (Security check): \)

e The Remote Agent verifies the Client Agent's credentials (e.g., checks the Authorization header).

Task Processing (Doing the work): NY\

e If authenticated, the Remote Agent accepts the task and begins processing it using its internal
logic and tools.

Response & Updates (Reporting back):

e Short tasks: Remote Agent sends a JSON-RPC response with the task status (completed or

failed) and any results (artifacts). \ A A)

e Long-running tasks: Remote Agent might immediately acknowledge the task, then stream status
updates (working, progress indicators) via Server-Sent Events (SSE), finally sending the
completion status.

A2A Interaction
Quick Demo / Walkthrough

"First, let's look at an Agent Card." (Show a sample agent.json file, highlighting id, capabilities,
endpoints, authentication). "This tells other agents what 'MyEchoAgent' can do and how to talk to it.

"Now, as a Client Agent, | want to send a task. I'll use curl to send a JSON payload to its /tasks/send
endpoint.”

(Show curl command: curl -X POST -H "Content-Type: application/json" -H "Authorization: Bearer
mytoken" -d '{"jsonrpc":"2.0""id":"task001","method":"echo_message","params":{"text":"Hello A2A!"}}'
http://my-echo-agent.example.com/tasks/send)

"And here's the kind of JSON response we'd get back from MyEchoAgent, confirming the task is
complete and echoing our message." (Show sample JSON response:
{"jsonrpc":"2.0","id":"task001","result":{"status":"completed","artifacts":[{"text":"Agent responded: Hello
A2AI"11})

ADK + A2A = The Best of Both Worlds

Build Powerful Agents with ADK, Connect Them with A2A:

e Use ADK's strengths to develop sophisticated individual Al agents, define their

complex internal logic, integrate tools deeply, and orchestrate multi-step

workflows within your own system.

e Then, leverage A2A as the "interface to the outside world" for your ADK agents or

systems:
o Expose Services: An ADK-built agent (or a system of ADK agents) can

publish an Agent Card and expose A2A-compliant endpoints, allowing

other A2A-compatible agents (from any source) to consume its services.

o Consume Services: Your ADK agents can act as A2A clients to discover O O O

and delegate tasks to other A2A-enabled agents, whether they are also

ADK-based, built with different frameworks, or provided by third parties.

ADK + A2A = The Best of Both Worlds

Enables Modular, Scalable, and Interoperable Systems:

e This combination allows you to build highly specialized agents (using ADK's
fine-grained control) and then connect them into larger, distributed applications
using A2A's standardized communication, promoting a more flexible, decoupled,

and future-proof architecture.

OO0

Questions?

