
Neural Network's Learning
Explained
Demystifying the technology behind artificial intelligence and machine
learning

https://gamma.app/?utm_source=made-with-gamma

Model Representation Paradigms

Machine Learning Models Categorized by Knowledge Representation

Parametric Models (Weight-Based)
A parametric model is a model that describes data using a fixed number of parameters.No matter how much data you give it,
the number of parameters stays the same.
In ML a parametric ML model assumes a specific functional form and learns a fixed number of parameters from data.

1.

Linear/Logistic Regressiona.

Neural Networks/Deep Learningb.

Support Vector Machinesc.

Tree-Based Models
These build hierarchical splits on features, no explicit weights, knowledge is in the tree structure.

2.

Decision Treesa.

Random Forestb.

Gradient Boosted Trees (XGBoost, LightGBM)c.

Instance-Based Models (Non-Parametric)
Instance-Based models Store training data and compute on-the-fly, no fixed parameters learned.

3.

K-Nearest Neighbors (KNN)a.

Kernel Density Estimationb.

Other categories
Probabilistic: Learns class probabilities from data counts, i.e Naive Bayes
Ensemble: Combines multiple models (often trees and others), i.e AdaBoost, Voting Classifiers

4.

https://gamma.app/?utm_source=made-with-gamma

Model Representation Paradigms cont…
Where Do Neural Networks Fit?

Neural networks, as already listed under parametric models, belong to the class of parametric learning algorithms.

They learn a fixed set of parameters, namely weights and biases, whose total number is determined by the network architecture.
Once training is complete, predictions rely only on these learned parameters and do not require storing the training data.

https://gamma.app/?utm_source=made-with-gamma

What Are Neural Networks?

Brain-Inspired Computing

Neural networks are computing systems inspired by how
biological brains process information. They consist of
interconnected layers of "neurons" that work together to
recognize patterns, make predictions, and solve complex
problems.

These networks learn from examples rather than following
explicitly programmed instructions, making them ideal for
tasks like image recognition, language processing, and
predictive analytics.

https://gamma.app/?utm_source=made-with-gamma

Why Use Neural Networks?
Neural networks are used to solve complex, non-linear, and high-dimensional problems that traditional algorithms struggle
with, such as image recognition, natural language processing, and predictive analytics

Pattern Recognition
Identify complex patterns in data that are difficult for traditional algorithms to detect

Adaptive Learning
Improve performance through experience without being explicitly reprogrammed

Versatile Applications
Apply to diverse fields from healthcare to finance to autonomous vehicles

https://gamma.app/?utm_source=made-with-gamma

Anatomy of a Neural Network

01

Input Layer

Receives raw data and passes it to the
network

02

Hidden Layers

Process information through multiple
transformations and feature extraction

03

Output Layer

Produces final predictions or
classifications

https://gamma.app/?utm_source=made-with-gamma

Forward Propagation: The Forward Pass
How Information Flows

A forward pass is the initial phase in neural network training where input data travels from the input layer, through hidden
layers, to the output layer to generate predictions

During forward propagation, data travels from the input layer through each hidden layer to the output layer. Each neuron
receives inputs, multiplies them by learned weights, adds a bias, and applies an activation function.

This process transforms raw input into meaningful predictions. Think of it as the network making its best guess based on
current knowledge.

Steps:

Input values: Data enters the network

Weighted sum: Values multiplied by weights

Activation Function: Transformation applied

Output prediction: Final result produced

https://gamma.app/?utm_source=made-with-gamma

Backpropagation: Learning from Mistakes
After forward propagation, the network compares its prediction to the actual result and calculates the error. Backpropagation
works backward through the network, adjusting the weights to reduce this error.

It utilizes the chain rule of calculus to efficiently determine how much each parameter contributed to the error, allowing
optimizers (like gradient descent) to update weights and minimize loss.

Steps:

Calculate Error: Compare prediction to actual value

Propagate Backward: Distribute error across layers

Update Weights: Adjust connections using gradient descent

Iterate: Repeat with new data to improve

This iterative process is how neural networks learn and improve their accuracy over time.

https://gamma.app/?utm_source=made-with-gamma

Activation Functions: Adding Non-Linearity

Activation functions are an integral building block of neural networks that enable them to learn complex patterns in data.

Why They're Essential

Activation functions introduce non-linearity into the network, enabling it to learn complex patterns and make sophisticated
decisions. Without them, a neural network could only model linear relationships.

Each function transforms the weighted sum of inputs into an output that determines whether a neuron "fires" and passes
information to the next layer.

Why Are Activation Functions Important?

Introduce Non-Linearity:
Real-world data is rarely linear. Activation functions allow neural networks to model non-linear relationships.

1.

Make Neural Networks Universal Function Approximators:
With non-linear activation functions, neural networks can approximate any function and solve, a wide variety of problems.

2.

Enable Hierarchical Learning:
Activation functions help neurons learn complex patterns at deeper layers.

3.

https://gamma.app/?utm_source=made-with-gamma

Activation Functions: Adding Non-Linearity
Common activation functions

a. ReLU Activation (Rectified Linear Unit)

It thresholds the input at zero, returning 0 for negative
values and the input itself for positive values.

Most popular for hidden layers. Fast, efficient, and works well
in practice

ReLU formula:-

f(x) = max(0,x)

b. Sigmoid activation

Maps inputs to a range between 0 and 1; commonly used for
binary classification in output layers.

Smooth curve from 0 to 1. Good for binary classification

Sigmoid function:-

f(x) = 1/(1 + e)−x

https://gamma.app/?utm_source=made-with-gamma

Activation Functions: Adding Non-Linearity
Common activation functions cont…

c. Tanh (Hyperbolic Tangent)

Similar to sigmoid but maps inputs between -1 and 1, often
leading to better convergence for hidden layers.

S-shaped from -1 to 1. Often used in hidden layers

Tanh formula

f(x) = (e −x e −(x))/(e +x e −(x))

b. Softmax activation

Designed to handle multi-class classification problems.

It works by squashing the output values of each class into the
range of 0 to 1 while ensuring that the sum of all probabilities
equals 1.

Converts outputs to probabilities. Perfect for multi-class
classification

Softmax function

σ(x) =i

 e∑j
x j

ex i

https://gamma.app/?utm_source=made-with-gamma

How a Neural Network Works

A neural network is a system that learns to make predictions or decisions by studying examples.

Layers (Structure)
The network is made of layers:

1.

Input layer: Takes in the data (for example: numbers, images, or text).a.

Hidden layers: Process the data by doing calculations and finding patterns.b.

Output layer: Gives the final answer or prediction.c.

Neurons (Small Workers)
Each layer contains neurons, which are small units that:

2.

Receive numbersa.

Do simple mathb.

Pass the result forward to the next layerc.

Weights and Biases
Weights decide how important each piece of information is.
Biases help adjust the result so the network can make better decisions.

3.

Learning
The network learns by:

4.

Making a guessa.

Comparing it with the correct answerb.

Adjusting its weights and biases to reduce mistakes.c.

By repeating this process many times the network become more accurate.

https://gamma.app/?utm_source=made-with-gamma

Before We Dive In: Building Your Foundatio

The next sections introduce calculus and computational graphs. These might sound intimidating, but they're just practical tools
that we'll break down with simple examples.

We're going to cover two key foundations:

Calculus Basics: Gradient descent, power rule, chain rule, partial derivatives

Computational Graphs: How data flows through calculations

https://gamma.app/?utm_source=made-with-gamma

Prerequisites: Calculus Basics for Neural Networks

Neural networks learn by adjusting weights to reduce errors. To know which direction to adjust weights, we need calculus
specifically, we need to understand how small changes in weights affect the final error. That's what calculus does.

The Big Picture: Gradient Descent

Imagine you're standing on a dark mountain and want to
reach the bottom. You can't see the whole mountain, but
you can feel the slope under your feet. Gradient descent is
exactly this: you feel which way is downhill (the gradient),
take a step in that direction, and repeat until you reach the
bottom. In neural networks, the "mountain" is the loss
function, and we're trying to find the lowest point
(minimum loss).

The Gradient: What Is It?

The gradient is simply the slope of a curve at a specific point. It tells you:

Which direction to move (uphill or downhill)

How steep the slope is (how fast to move)

If the gradient is positive, the function is going up. If it's negative, it's going down. We move in the opposite direction of the
gradient to reach the minimum.

Calculus Rules You Need to Know
1. Power Rule

What it does: Helps you find the slope of simple polynomial functions.

Simple explanation: If you have a function like f(x) = x², the power rule tells you how fast it's changing at any point.

The rule: If , then the derivative is f(x) = xn f (x) =′ n× xn−1

Simple example:

f(x) = x²

Using power rule: = 2xf (x) =′ 2 × x2−1

At x = 3: the slope is 2 × 3 = 6 (the function is going up steeply)

At x = 0: the slope is 2 × 0 = 0 (flat, this is the minimum)

2. Chain Rule

What it does: Helps you find the slope when functions are nested inside each other (like Russian dolls).

Simple explanation: When you have a function inside another function, you can't just apply the power rule directly. The chain
rule breaks it down into smaller pieces.

The rule: If you have , then the derivative is f(g(x)) f (g(x)) ×′ g (x)′

(Derivative of outer function × Derivative of inner function)

Simple example:

f(x) = (x + 2)²

This is a function inside a function: outer is "square it", inner is "add 2"

Using chain rule:

Derivative of outer: 2(x + 2)

Derivative of inner: 1

Combined: 2(x + 2) × 1 = 2(x + 2)

At x = 1: the slope is 2(1 + 2) = 6

3. Partial Derivative

What it does: Finds the slope when you have multiple variables, but you only care about how one of them affects the output.

Simple explanation: Imagine a function that depends on both weight and bias. A partial derivative asks: "If I only change the
weight (keeping bias fixed), how does the output change?" It's like asking about one ingredient's effect on a recipe while ignoring
all others.

The notation: means "the partial derivative of f with respect to w"∂f/∂w

Simple example:

f(w, b) = w × 2 + b

Partial derivative with respect to w: (changing w by 1 changes output by 2)∂f/∂w = 2

Partial derivative with respect to b: (changing b by 1 changes output by 1)∂f/∂b = 1

This tells us: weight changes have twice the impact of bias changes

Why This Matters for Neural Networks

In neural networks, we have a loss function that depends on many weights and biases. We use:

Power rule and chain rule to compute how the loss changes with respect to each weight

Partial derivatives to isolate the effect of each individual weight

The gradient (slope) to know which direction to adjust each weight

This is exactly what backpropagation does automatically—it uses these calculus rules to compute gradients for every weight in
the network.

https://gamma.app/?utm_source=made-with-gamma

Weight-Based Training: How It Really Works

Weight-based training is the process of finding the perfect weights and biases that make your network's predictions match the
true answers. We measure how wrong we are using a cost function, then use gradient descent to adjust weights step-by-step
until we find the best values.

Key Concepts

Definitions:

Cost Function (Loss): Measures the difference between
predicted and actual values. For regression, we use Mean
Squared Error (MSE): L = 1/m(y − ​)ŷ 2

Gradient: The slope of the loss curve. It tells us which
direction and how fast to move the weight to reduce loss.

Gradient Descent: The algorithm that updates weights using:
, where α is the learning rate.w ​ =new w ​ −old α × ​

dw
dL

Learning Rate (α): Controls step size. Too large =
overshooting, too small = slow learning.

A Simple Training Example:

Setup:

Input: x = 1

Target: y = 2

Initial weight: w₀ = 0

Initial bias: b₀ = 0

Learning rate: α = 0.5

Network equation: ​ =ŷ w × x + b

Iteration 1:
Forward Pass:
Loss:
Gradients: ,
Weight Update: ,

​ ​ =ŷ0 0

L ​ =0 ½(0 − 2) =2 2

∂L/∂w = −2 ∂L/∂b = −2

w ​ =1 0 − 0.5 × (−2) = 1 b ​ =1 0 − 0.5 × (−2) = 1

Iteration 2:
Forward Pass:
Loss:
✓ Network has converged! Perfect prediction achieved.

​ ​ =ŷ1 1 × 1 + 1 = 2

L ​ =1 ½(2 − 2) =2 0

https://gamma.app/?utm_source=made-with-gamma

Visualizing gradient descent

The parabola below shows how loss changes with different weight values. Gradient descent moves us down the curve toward
the minimum loss. Each iteration takes a step proportional to the gradient.

The 'Loss Function vs. Weight (Gradient Descent Path)' plot
visualizes the relationship between the weight (w) and the loss
(L), demonstrating how the gradient descent algorithm
navigates this landscape.

3D representation of the 'loss' (how wrong the model is)
across all possible values for two key adjustable parameters,
'weight' and 'bias'. The lowest points on this surface indicate
the best parameter combinations where the model makes the
fewest errors.

https://gamma.app/?utm_source=made-with-gamma

Weight-Based Training: The Simple Summary
The 5-Step Process:

Pick a Weight: Start with a random weight value. This is your first guess.1.

Make a Prediction: Use the weight to predict:
(This is what your network thinks the answer is)

2. ​ =ŷ weight × input

Calculate the Loss (How Wrong Are We?): Loss =
The bigger the loss, the more wrong you are.

3. (actual answer − predicted answer)2

Compute the Gradient (Which Direction to Move?): The gradient tells you: "Should I make the weight bigger or smaller to
reduce loss?"
It's like asking: "Which way should I walk to get to the bottom of the hill?"

4.

Update the Weight (Take a Step): New weight = Old weight - (learning rate gradient)
You move the weight in the direction that reduces loss.

5. ×

Repeat Until Convergence: Keep doing steps 2-5 until the loss stops getting smaller. When loss is at its minimum, you've
found the best weight!

6.

The Big Picture:

"Think of it like finding the lowest point in a valley. You start somewhere random, measure how high you are (loss), then take a
step downhill (gradient descent). Keep stepping downhill until you reach the bottom. That's weight-based training!"

https://gamma.app/?utm_source=made-with-gamma

Computational Graphs

A computational graph is a visual representation of how data flows through mathematical operations. Each node represents an
operation (like addition or multiplication), and edges show how data moves between operations.

Example: y = (a+b)*(b-c)

To break this down:

Step 1: (addition operation)d = a+ b

Step 2: (subtraction operation)e = b− c

Step 3: (multiplication operation)y = d ∗ e

The graph shows these three operations as nodes, with
arrows indicating which variables feed into each operation.
This structure is essential for backpropagation, as it allows
the network to trace how changes in inputs affect the final
output.

This diagram visually represents the flow of data from inputs
(a, b, c) through intermediate operations to the final output
(f).

Computation graph is a key idea in deep learning and it is also how programming frameworks like tensor-flow automatically
computes derivatives of neural networks.

Back-propagation is an efficient way to compute derivatives

if N nodes and P parameters, it computes derivatives in roughly N+P steps rather than N x P steps

N P N + P N * P

10,000 100,000 110,000 1B

https://gamma.app/?utm_source=made-with-gamma

Working Example: Forward Pass

Let's walk through a simple neural network with one hidden layer to see how data flows forward and how loss is calculated.

A simple neural network with one hidden layer. Data flows
from input → hidden layer → output layer, producing a final
prediction.

The goal here is to calculate the final output and the
resulting loss given specific inputs and weights.

Given Values:

Input: x = 1

Target output: y = 5

Layer 1 weights: , bias w ​ =1 2 b ​ =1 0

Layer 2 weights: , bias w ​ =2 3 b ​ =2 1

Step-by-Step Calculations:

Step 1: Layer 1 Output 1. a ​ =1 w ​ ×1 x + b =1 2 × 1 + 0 = 2

Step 2: Layer 2 Output 2. a ​ =2 w ​ ×2 a ​ +1 b ​ =2 3 × 2 + 1 = 7

Step 3: Calculate Loss 3. Loss = ½(a ​ −2 y) =2 ½(7 − 5) =2 ½(4) = 2

What This Means:

Our network predicted 7, but the correct answer was 5. The loss of 2 tells us how far off we were. In the next step
(backpropagation), we'll use this loss to adjust the weights to make better predictions.

The Computational Graph:

The forward pass can be visualized as a series of operations:

This graph structure is what allows backpropagation to efficiently compute how to adjust each weight.

https://gamma.app/?utm_source=made-with-gamma

Backward Pass: Computing Gradients

To adjust weights and improve predictions, we need to know how much each weight contributed to the loss. We use the Chain
Rule to work backwards from the loss to each weight.

Step 1: Gradient of Loss with respect to Layer 2 Output

∂J/∂a¢ = (a¢ - y) = (7 - 5) = 2

Step 2: Gradients for Layer 2 Parameters

For bias b¢: ∂J/∂b¢ = 2 × 1 = 2

For weight w¢: ∂J/∂w¢ = 2 × 1 × a¡ = 2 × 2 = 4

Step 3: Gradient flowing back to Layer 1

∂J/∂a¡ = 2 × 1 × w¢ = 2 × 3 = 6

Step 4: Gradients for Layer 1 Parameters

For bias b¡: ∂J/∂b¡ = 6 × 1 = 6

For weight w¡: ∂J/∂w¡ = 6 × 1 × x = 6 × 1 = 6

Summary of Gradients:

∂J/∂w¡ = 6

∂J/∂b¡ = 6

∂J/∂w¢ = 4

∂J/∂b¢ = 2

These gradients tell us how much to adjust each weight. In the next step, we'll use these to update the weights and reduce the
loss.

https://gamma.app/?utm_source=made-with-gamma

Updating Weights and Bias

To update the weights, we use the Gradient Descent formula. This is where the network actually "learns" by shifting its
parameters in the opposite direction of the gradient to minimize the loss.

The Update Rule:

New Parameter = Old Parameter - (α × Gradient)

Where α (learning rate) = 0.1

Step 1: Updating Layer 2 Parameters

For w₂:

w₂_new = 3 - (0.1 × 4) = 3 - 0.4 = 2.6

For b₂:

b₂_new = 1 - (0.1 × 2) = 1 - 0.2 = 0.8

Step 2: Updating Layer 1 Parameters

For w₁:

w₁_new = 2 - (0.1 × 6) = 2 - 0.6 = 1.4

For b₁:

b₁_new = 0 - (0.1 × 6) = 0 - 0.6 = -0.6

Summary of Updated Parameters:

w₁: 2 → 1.4

b₁: 0 → -0.6

w₂: 3 → 2.6

b₂: 1 → 0.8

What Happened:

We took one step of gradient descent. The weights and biases have been adjusted to reduce the loss. If we repeat this process
many times, the network will continue to improve its predictions.

https://gamma.app/?utm_source=made-with-gamma

Summary: How Neural Networks Learn

Recap of the key concepts and how they all fit together.

The Big Picture:

Neural networks learn by adjusting their weights and biases to minimize prediction errors. This process happens in three main
phases: forward pass, backward pass, and weight updates. Repeat this cycle many times, and the network gets better and better
at making predictions.

What We Covered:

Forward Pass (Making Predictions)1.

Data flows from input layer through hidden layers to output layer

Each neuron multiplies inputs by weights, adds bias, and applies activation function

Result: a prediction (ŷ)

Calculate Loss (Measuring Error)2.

Compare prediction to actual answer: Loss = (ŷ - y)²

Loss tells us how wrong we were

Goal: minimize this loss

Backward Pass (Finding Gradients)3.

Use Chain Rule to compute how much each weight contributed to the loss

Work backwards from output to input

Result: gradients for every weight and bias

Update Weights (Learning)4.

Use Gradient Descent formula: New Weight = Old Weight - (learning rate × gradient)

Move weights in the direction that reduces loss

Small steps, repeated many times

Repeat5.

Do forward pass with new weights

Calculate new loss

Compute new gradients

Update weights again

Continue until loss stops decreasing (convergence)

Why This Matters:

This cycle is the foundation of all neural network training. Whether you're training a small network or a massive deep learning
model, the same principles apply. The only difference is scale and complexity.

Key Takeaways:

Weights are the "knobs" the network adjusts to learn

Loss measures how wrong predictions are

Gradients tell us which direction to turn the knobs

Gradient descent is the algorithm that turns the knobs

Backpropagation efficiently computes gradients using the Chain Rule

Computational graphs organize operations so backpropagation can work

Core Concepts Covered:

This course explains how neural networks learn from data. It covers forward propagation, backpropagation, gradient descent,
and weight updates. The calculus behind these concepts (power rule, chain rule, partial derivatives) and why computational
graphs matter are also detailed. This is the core knowledge that powers modern AI.

https://gamma.app/?utm_source=made-with-gamma

