
Self-Attention in 
Transformer



Transformer architecture



Key 
Takeaway:

Sequential Processing: RNNs/LSTMs read left-to-right. 

Information must pass through every single step.

Signal Decay: The information signal from an early, important 

token (like a subject) weakens significantly as the recurrent 

network processes a long sequence.

Why Self-Attention? The RNN Problem

Result: Due to the severe signal decay over a long sequence, 

the model effectively "forgets" the original subject (e.g., "The 

keys") by the time it reaches the necessary predicate (e.g., 

"are"), leading to difficulty in resolving grammatical 

dependencies



Definition

A mechanism that allows a model to relate different positions of a 

single sequence to compute a representation of the sequence 

itself.

The "Dictionary" Analogy

When you read the word "bank", you don't know if it means 

river bank or financial bank.

You look at other words like "money" or "water" to understand 

the context.

Self-Attention is the mathematical process of looking at the 

rest of the sentence to clarify the meaning of the current 

word.

What is Self-Attention?



Parallel Computation

Simultaneous Processing: Unlike RNNs that process tokens 

one by one (Sequential), Self-Attention computes 

relationships for all tokens at the same time.

Modern Hardware: This perfectly exploits GPUs/TPUs, which 

are designed for massive parallel operations.

Result: Dramatically faster training times for large datasets.

The Self-Attention Solution

Key 
Takeaway:



O(1) Path Length: Every token can attend to every other 

token directly. There is no "distance" in the network topology.

Vanishing Gradient? Gone. Information doesn't decay as it 

travels through time steps (because there are no time steps).

Dynamic Weights: Weights are computed from the content (I 

love apple), not just fixed parameters.

The Self-Attention Solution

Result: The model can pay equal attention to "The keys" 

(start) and "are" (end) simultaneously.

Global context



Think of every word as a mini search engine user.

Key 
Takeaway:

Query (Q)
"What am I looking for?"

Token "ate" searches for [food, edible 

objects].

Key (K)
"What defines me?"

Token "apple" tags itself as [fruit, food, red].

Value (V)

"My actual content"

The vector representing the concept of 

"apple".

The Core Formula



Key 
Takeaway:

Dot Product = Similarity

Why do we multiply?

Geometric Meaning: The dot product measures how much 

two vectors point in the same direction.

Aligned:  (Strong Match)

Opposite:  (Strong Mismatch)

Orthogonal:  (Irrelevant)

Why Dot Product? (The Math of "Matching")



Key 
Takeaway:

Asymmetric Roles

Projections = Intelligence

The matrices  W_Q, W_K, W_V  constitute the learned 

"intelligence" that decides how words relate to each other.

Problem: If we just used the word vector itself, "I" would look 

for "I". Symmetry is bad here.

Solution: We project the word into different roles.

Role 1 (Q): "I am a subject looking for a verb."

Role 2 (K): "I am a pronoun representing the speaker."

Why 3 Matrices? (The Reasoning)

Role 3 (V): "I am the concept of 'self' to be added to the 

sentence."



The "Exploding" Problem

The Fix

Dividing by  \sqrt{d_k}  keeps the variance stable, 

ensuring healthy gradients flow backward.

High-dimensional vectors (e.g., 1024 dim) produce massive 

dot products (e.g., +500).

Softmax Impact:  is astronomical. Softmax outputs become 

[0, 0, 1, 0].

Gradient Death: When Softmax is saturated (outputs 0 or 1), 

the gradient is effectively zero. The model stops learning.

Scaling Deep Dive: Why  1/sqrt{d_k} ?



Limitation With Self-Attention

- No Inherent Order: it treats tokens like an unordered set.It doesn’t know which word comes 

first or last.

- Quadratic Cost (O(N²)): Comparing every word to every word is expensive. This limits 

context length.

- Attention Can Be Too Global: Tokens can attend to everything, even irrelevant tokens which

Causes noise, unnecessary mixing, and hallucination risk.

- No Built-In Hierarchy: Tokens are treated flatly. model doesn’t inherently know phrases or 

syntax since Attention is uniform across tokens.



Key 
Takeaway:

Why we can't have infinite context

1,000 words: 1 million comparisons.

10,000 words: 100 million comparisons.

100,000 words: 10 billion comparisons.

The Limitation: O(N²) Complexity



Part 2: A Worked Example
"I love apple phones"



We start with an embedding dimension d_model = 4. This is our input matrix X.

Token Embedding Vector (X)

I 1.0 0.5 0.2 0.1

love 0.9 1.1 0.1 0.0

apple 0.1 0.2 1.0 0.5

phones 0.0 0.1 0.4 1.2

Step 1: Input Token Embeddings



Model Dimension

The size of the input and output 

vectors for the layer.

Heads

We split the process into 2 parallel 

"heads" to capture different 

features.

Dimension per Head

Calculated as    dmodel /h

Step 2: Model Configuration



Each head has unique projection matrices    W_q , W_k and W_v

Query Projection ( W_q ) Key Projection ( W_k ) Value Projection ( W_v )

Step 3: Learned Projections (Head 1)



We multiply input X by the projections to get Q, K, and V vectors.

Token Query (Q) Key (K) Value (V)

I [1.2, 0.6] [1.2, 0.6] [1.2, 0.6]

love [1.0, 1.1] [0.9, 1.1] [0.9, 1.1]

apple [1.1, 0.7] [0.7, 0.7] [1.1, 1.2]

phones [0.4, 1.3] [1.3, 0.3] [1.3, 1.3]

Step 4: Computing Vectors



The Formula

We calculate how much each word focuses on every other word 

using the dot product.

High scores indicate a stronger relationship or relevance between 

the two tokens.

Raw Scores Matrix

I love apple phones

I 1.80 1.74 1.26 1.74

love 1.86 2.11 1.47 1.96

apple 1.74 1.76 1.26 1.64

phones 1.26 1.79 1.19 1.91

Step 5: Raw Attention Scores



1. Divide by     d_k =  sqrt(2)  ≈   1.414   to stabilize gradients.

2. Apply Softmax to convert scores into probabilities (sum to 1).

Attention Weights Matrix

I love apple phones Sum

I 0.278 0.266 0.190 0.266 1.0

love 0.248 0.296 0.189 0.267 1.0

apple 0.273 0.277 0.195 0.255 1.0

phones 0.200 0.292 0.191 0.317 1.0

Example: "I" pays 27.8% attention to itself and 19.0% to "apple".

Step 6 & 7: Scaling and Softmax



Calculation for "I"

 0.28(V_I) + 0.27(V_love) + 0.19(V_apple) + 0.27(V_phones)  

Result: [1.128, 1.034]

Full Head 1 Output

Token Output Vector (O1)

I [1.128, 1.034]

love [1.119, 1.049]

apple [1.124, 1.035]

phones [1.125, 1.082]

Step 8: Weighted Sum (Head 1 Output)



Head 2 runs in parallel with its own matrices. We then concatenate the outputs from both heads.

Final Multi-Head Output

Token Concatenated Vector (dim=4)

I [1.128, 1.034, 0.99, 1.03]

love [1.119, 1.049, 1.01, 1.04]

apple [1.124, 1.035, 1.02, 1.02]

phones [1.125, 1.082, 1.02, 1.02]

Head 1 (Calculated)

[1.13, 1.03]

Head 2 (Simulated)

[0.99, 1.03]

Step 9 & 10: Concatenation



Before attention, the vector for "Apple" is static. It contains all 

potential meanings mixed together.

It sits in a neutral, ambiguous space.

It is equidistant from Fruits (Nature) and Tech (Digital).

The model doesn't know which meaning is correct yet.

Visualizing the Meaning: Static Embeddings



After Self-Attention, the vector updates based on context.

Because "Apple" attended strongly to "Phones", it pulls 

information from the Tech cluster.

The vector physically shifts in the high-dimensional space.

It now sits firmly in the Tech semantic region.

Visualizing the Meaning: The Shift



Projections: Input is projected into Query, Key, and Value 

spaces.

Scores: Attention scores determine relevance between 

tokens (   Q  ·  K  ).

Softmax: Converts scores to probabilities.

Weighted Sum: Output is a mix of Value vectors based on 

attention weights.

Multi-Head: Allows the model to capture multiple types of 

relationships at once.

Key Takeaways


