Self-Attention in
Transformer

Transformer architecture

Output
Probabilities

Add & Norm

Add & Norm
Feed
Forward

[N

»{ Add & Norm

Sel tention

i
|
W f 4
%
.- = N &
 ——— _—

Positional ° © © ‘(Positional

Encoding Encoding

Input Output
Embedding Embedding

Input Output
Inputs Inputs

(shifted right)

Why Self-Attention? The RNN Problem

> Sequential Processing: RNNs/LSTMs read left-to-right.

Information must pass through every single step.

> Signal Decay: The information signal from an early, important
token (like a subject) weakens significantly as the recurrent
network processes a long sequence.

> Result: Due to the severe signal decay over along sequence,
the model effectively "forgets" the original subject (e.g.. "The
keys") by the time it reaches the necessary predicate (e.g.
"are"), leading fo difficulty in resolving grammatical

dependencies

Key Sequential models struggle with long-range dependencies because information decays over time steps.
Takeaway:

What is Self-Attention?

Contextualized Sequence Representation

(The

Cat

sat

on

the

mat |

Definition
A mechanism that allows a model to relate different positions of a

single sequence to compute a representation of the sequence

itself.

The "Dictionary" Analogy

> When you read the word "bank", you don't know if it means

river bank or financial bank.

> Youlook at other words like "money" or "water" to understand

the context.

> Self-Attention is the mathematical process of looking at the
rest of the senfence to clarify the meaning of the current

Welgel

The Self-Attention Solution

Parallel Computation

> Simultaneous Processing: Unlike RNNs that process tokens
one by one (Sequential), Self-Attention computes
relationships for all tokens at the same fime.

> Modern Hardware: This perfectly exploits GPUs/TPUs, which

are designed for massive parallel operations.

> Result: Dramatically faster training times for large datasets.

Key Self-attention trades sequential processing for parallel pairwise comparisons, solving the long-range dependency problem.
Takeaway:

The Self-Attention Solution

Global context
> O(1) Path Length: Every token can attend to every other
token directly. There is no "distance" in the network tfopology.

> Vanishing Gradient? Gone. Information doesn't decay as it

travels through ftime steps (because there are no time steps).
> Dynamic Weights: Weights are computed from the content (I

love apple). not just fixed parameters.

> Result: The model can pay equal attention to "The keys"

(start) and "are" (end) simultaneously.

The Core Formula

T
S

Attention (Q , K, V) = softmax 5
Kk

Think of every word as a mini search engine user.

Q > —

Query (Q) Key (K) Value (V)
"What am | looking for?" "What defines me?" "My actual conftent"
Token "ate" searches for [food, edible Token "apple" tags itself as [fruit, food, red]. The vector representing the concept of
objectsl. "apple".
Key We calculate the match between Query and Key. If they match (High Score), we fetch the Value.

Takeaway:

Why Dot Product? (The Math of "Matching")

Dot Product = Similarity

Aligned
Why do we multiply? (egz 0°)

> Geometric Meaning: The dot product measures how much

two vectors point in the same direction.

> Aligned: (Strong Match)
> Opposite: (Strong Mismatch) A - B = |A||B|cos(8) > 0

> Orthogonal: (Irrelevant)

Orthogonal
CEER

Ol

Key The attention score is literally a measurement of "how parallel” the Query vector is to the Key vector.

Takeaway:

Opposite
CERER

my
m

E - F = [E||F|cos(8) < 0

Why 3 Matrices? (The Reasoning)

Asymmetric Roles

> Problem: If we just used the word vector itself, "I" would look

for "I'. Symmetry is bad here.

> Solution: We project the word into different roles.

Projections = Intelligence
> Role1(Q):"l am a subject looking for a verb."

The matrices W_Q, W_K, W_V constitute the learned
> Role 2 (K): "l am a pronoun representing the speaker "

"infelligence" that decides how words relate to each other.
> Role 3 (V): "l am the concept of 'self' to be added to the

sentence."

Key Projections decouple a word's “identity” from its "needs" (queries) and “offerings" (keys).
Takeaway:

Scaling Deep Dive: Why 1/sqri{d_k3} ?

The "Exploding" Problem
> High-dimensional vectors (e.g. 1024 dim) produce massive The Fix

dot products (e.g., +500).

1/7/d

> Softmax Impact: is astronomical. Softmax outputs become

[0, 0, 1,01 . :
Dividing by \sqgrt{d_k} keeps the variance stable,

> Gradient Death: When Softmax is saturated (outputs O or 1), ensuring healthy gradients flow backward.

the gradient is effectively zero. The model stops learning.

Limitation With Self-Attention

- No Inherent Order: it treats tokens like an unordered set It doesn't know which word comes

first or last.

- Quadratic Cost (O(N?)): Comparing every word to every word is expensive. This limits

confext length.

- Attention Can Be Too Global: Tokens can attend to everything, even irrelevant fokens which

Causes noise, unnecessary mixing, and hallucination risk.

- No Built-In Hierarchy: Tokens are treated flatly. model doesn't inherently know phrases or

syntax since Aftention is uniform across tokens.

The Limitation: O(N*) Complexity

Computational Complexity: O(n?)
Why we can't have infinite context

V' N

> 1,000 words: 1 million comparisons. il
S o)

> 10,000 words: 100 million comparisons. z 2
£

> 100,000 words: 10 billion comparisons. =
£ O(n log n)
=

o(1)
Input Size (n) g
Key The attention matrix size grows quadratically. Doubling the input length quadruples the memory needed.

Takeaway:

Part 2: A Worked Example

"I Love apple phones"”

Step 1. Input Token Embeddings

We start with an embedding dimension d_model = 4. This is our input matrix X.

Token Embedding Vector (X)

I 1.0 0.5
love 0.9 1.1
apple 0.1 0.2
phones 0.0 0.1

1.0 05 0.2 0.1

X:=09 1.1 0.1 0.0

0.1 0.2 1.0 05

0.0 0.1 04 1.2

0.

0.

1.

0.

2

1

¢

4

0.1

0.0

0.5

1.2

Step 2: Model Configuration

O

Model Dimension

dmodel =4

The size of the input and output

vectors for the layer.

We split the process into 2 parallel
"heads" to capture different

features.

Eu

Dimension per Head

dk:2

Calculated as dmodel /h

Step 3: Learned Projections (Head 1)

Each head has unique projection matrices W_q, W_k and W_v

Query Projection (W_q) Key Projection (W_k) Value Projection (W_v)
10 10 150
01 01 0 1
10 01 S |
01 10 01

Step 4: Computing Vectors

We multiply input X by the projections to get Q, K, and V vectors.

Q:XWQ I K:X’WK | V:X'WV

Token Query (Q) Key (K) Value (V)

I [1.2, 0.6] [1.2, 0.6] [1.2, 0.6]
love [1.0, 1.1] [0.9, 1.1] [0.9, 1.1]
apple [1.1, 0.7] [0.7, 0.7] [1.1, 1.2]

phones [0.4, 1.3] [1.3, 0.3] [1.3, 1.3]

Step S: Raw Attention Scores

The Formula

We calculate how much each word focuses on every other word

using the dot product.

Score = Q - K

High scores indicate a stronger relationship or relevance between

the two tokens.

love

apple

phones

1.80

1.86

1.74

1.26

Raw Scores Matrix

love

1.74

2.11

1.76

1.79

apple

1.

1.

1.

1.

26

47

26

19

phones

1.74

1.96

1.64

1.91

Step 6 & 7: Scaling and Softmax

love

apple

phones

|. Divide by d_k= sqrt(2) = 1414 to stabilize gradients.

2. Apply Softmax fo convert scores info probabilities (sum to 1).

0.278

0.248

0.273

0.200

Attention Weights Matrix
love apple
0.266 0.190
0.296 0.189
0.277 0.195
0.292 0.191

Example: "I' pays 27.8% attention fo itself and 19.0% to "apple".

phones

0.266

0.267

0.255

0.317

Sum

1.0

1.0

1.0

1.0

Step 8: Weighted Sum (Head 1 Output)

Full Head 1 Output

Calculation for "I"

Token
j I
love
0.28(V_I) + 0.27(V_love) + 0.19(V_apple) + 0.27(V_phones)
apple

Result: [1.128, 1.034]

phones

Output Vector (01)
[1.128, 1.034]
[1.119, 1.049]
[1.124, 1.035]

[1.125, 1.082]

Step 9 & 10: Concatenation

Head 2 runs in parallel with its own matrices. We then concatenate the outputs from both heads.

Head 1 (Calculated) + Head 2 (Simulated)
[1.13, 1.03] [0.99, 1.03]

Final Multi-Head Output

Token Concatenated Vector (dim=4)

I [1.128, 1.034, 0.99, 1.03]
love [1.119, 1.049, 1.01, 1.04]
apple [1.124, 1.035, 1.02, 1.02]

phones [1.125, 1.082, 1.02, 1.02]

Visualizing the Meaning: Static Embeddings

Object
Before attention, the vector for "Apple" is static. It contains all Banana
@
potential meanings mixed together.
2> It sits in a neutral, ambiguous space. Nature (Organic) Apple (Static)

o
> Itis equidistant from Fruits (Nature) and Tech (Digital).

> The model doesn't know which meaning is correct yet.

Concept

Phones

Tech (Digital)

Microsoft

Visualizing the Meaning: The Shift

After Self-Attention, the vector updates based on confext.

> Because "Apple" attended strongly to "Phones", it pulls

information from the Tech cluster.

> The vector physically shifts in the high-dimensional space.

2> It now sits firmly in the Tech semantic region.

Banana

Phones

Apple (Contdt)

Microsoft

Key Takeaways

Encoder processes
the input sequ
breaking itd
nto meaningful
representations.

Positional
Encodings capture
the location of each

token inthe

sequence

Wwiput Probabslities

Softmax
Output

Output
Embedding

Decoder takes these
representations and

ge

output se
like a transl
text contin

Transformer Architecture

(Simplified)

Projections: Input is projected info Query, Key, and Value

spaces.

Scores: Attention scores determine relevance between

tokens (Q - K).

Softmax: Converts scores to probabilities.

Weighted Sum: Output is a mix of Value vectors based on
attention weights.

Multi-Head: Allows the model to capture multiple types of

relationships at once.

