
Self-Attention in
Transformer

Transformer architecture

Key
Takeaway:

Sequential Processing: RNNs/LSTMs read left-to-right.

Information must pass through every single step.

Signal Decay: The information signal from an early, important

token (like a subject) weakens significantly as the recurrent

network processes a long sequence.

Why Self-Attention? The RNN Problem

Result: Due to the severe signal decay over a long sequence,

the model effectively "forgets" the original subject (e.g., "The

keys") by the time it reaches the necessary predicate (e.g.,

"are"), leading to difficulty in resolving grammatical

dependencies

Definition

A mechanism that allows a model to relate different positions of a

single sequence to compute a representation of the sequence

itself.

The "Dictionary" Analogy

When you read the word "bank", you don't know if it means

river bank or financial bank.

You look at other words like "money" or "water" to understand

the context.

Self-Attention is the mathematical process of looking at the

rest of the sentence to clarify the meaning of the current

word.

What is Self-Attention?

Parallel Computation

Simultaneous Processing: Unlike RNNs that process tokens

one by one (Sequential), Self-Attention computes

relationships for all tokens at the same time.

Modern Hardware: This perfectly exploits GPUs/TPUs, which

are designed for massive parallel operations.

Result: Dramatically faster training times for large datasets.

The Self-Attention Solution

Key
Takeaway:

O(1) Path Length: Every token can attend to every other

token directly. There is no "distance" in the network topology.

Vanishing Gradient? Gone. Information doesn't decay as it

travels through time steps (because there are no time steps).

Dynamic Weights: Weights are computed from the content (I

love apple), not just fixed parameters.

The Self-Attention Solution

Result: The model can pay equal attention to "The keys"

(start) and "are" (end) simultaneously.

Global context

Think of every word as a mini search engine user.

Key
Takeaway:

Query (Q)
"What am I looking for?"

Token "ate" searches for [food, edible

objects].

Key (K)
"What defines me?"

Token "apple" tags itself as [fruit, food, red].

Value (V)

"My actual content"

The vector representing the concept of

"apple".

The Core Formula

Key
Takeaway:

Dot Product = Similarity

Why do we multiply?

Geometric Meaning: The dot product measures how much

two vectors point in the same direction.

Aligned: (Strong Match)

Opposite: (Strong Mismatch)

Orthogonal: (Irrelevant)

Why Dot Product? (The Math of "Matching")

Key
Takeaway:

Asymmetric Roles

Projections = Intelligence

The matrices W_Q, W_K, W_V constitute the learned

"intelligence" that decides how words relate to each other.

Problem: If we just used the word vector itself, "I" would look

for "I". Symmetry is bad here.

Solution: We project the word into different roles.

Role 1 (Q): "I am a subject looking for a verb."

Role 2 (K): "I am a pronoun representing the speaker."

Why 3 Matrices? (The Reasoning)

Role 3 (V): "I am the concept of 'self' to be added to the

sentence."

The "Exploding" Problem

The Fix

Dividing by \sqrt{d_k} keeps the variance stable,

ensuring healthy gradients flow backward.

High-dimensional vectors (e.g., 1024 dim) produce massive

dot products (e.g., +500).

Softmax Impact: is astronomical. Softmax outputs become

[0, 0, 1, 0].

Gradient Death: When Softmax is saturated (outputs 0 or 1),

the gradient is effectively zero. The model stops learning.

Scaling Deep Dive: Why 1/sqrt{d_k} ?

Limitation With Self-Attention

- No Inherent Order: it treats tokens like an unordered set.It doesn’t know which word comes

first or last.

- Quadratic Cost (O(N²)): Comparing every word to every word is expensive. This limits

context length.

- Attention Can Be Too Global: Tokens can attend to everything, even irrelevant tokens which

Causes noise, unnecessary mixing, and hallucination risk.

- No Built-In Hierarchy: Tokens are treated flatly. model doesn’t inherently know phrases or

syntax since Attention is uniform across tokens.

Key
Takeaway:

Why we can't have infinite context

1,000 words: 1 million comparisons.

10,000 words: 100 million comparisons.

100,000 words: 10 billion comparisons.

The Limitation: O(N²) Complexity

Part 2: A Worked Example
"I love apple phones"

We start with an embedding dimension d_model = 4. This is our input matrix X.

Token Embedding Vector (X)

I 1.0 0.5 0.2 0.1

love 0.9 1.1 0.1 0.0

apple 0.1 0.2 1.0 0.5

phones 0.0 0.1 0.4 1.2

Step 1: Input Token Embeddings

Model Dimension

The size of the input and output

vectors for the layer.

Heads

We split the process into 2 parallel

"heads" to capture different

features.

Dimension per Head

Calculated as dmodel /h

Step 2: Model Configuration

Each head has unique projection matrices W_q , W_k and W_v

Query Projection (W_q) Key Projection (W_k) Value Projection (W_v)

Step 3: Learned Projections (Head 1)

We multiply input X by the projections to get Q, K, and V vectors.

Token Query (Q) Key (K) Value (V)

I [1.2, 0.6] [1.2, 0.6] [1.2, 0.6]

love [1.0, 1.1] [0.9, 1.1] [0.9, 1.1]

apple [1.1, 0.7] [0.7, 0.7] [1.1, 1.2]

phones [0.4, 1.3] [1.3, 0.3] [1.3, 1.3]

Step 4: Computing Vectors

The Formula

We calculate how much each word focuses on every other word

using the dot product.

High scores indicate a stronger relationship or relevance between

the two tokens.

Raw Scores Matrix

I love apple phones

I 1.80 1.74 1.26 1.74

love 1.86 2.11 1.47 1.96

apple 1.74 1.76 1.26 1.64

phones 1.26 1.79 1.19 1.91

Step 5: Raw Attention Scores

1. Divide by d_k = sqrt(2) ≈ 1.414 to stabilize gradients.

2. Apply Softmax to convert scores into probabilities (sum to 1).

Attention Weights Matrix

I love apple phones Sum

I 0.278 0.266 0.190 0.266 1.0

love 0.248 0.296 0.189 0.267 1.0

apple 0.273 0.277 0.195 0.255 1.0

phones 0.200 0.292 0.191 0.317 1.0

Example: "I" pays 27.8% attention to itself and 19.0% to "apple".

Step 6 & 7: Scaling and Softmax

Calculation for "I"

 0.28(V_I) + 0.27(V_love) + 0.19(V_apple) + 0.27(V_phones)

Result: [1.128, 1.034]

Full Head 1 Output

Token Output Vector (O1)

I [1.128, 1.034]

love [1.119, 1.049]

apple [1.124, 1.035]

phones [1.125, 1.082]

Step 8: Weighted Sum (Head 1 Output)

Head 2 runs in parallel with its own matrices. We then concatenate the outputs from both heads.

Final Multi-Head Output

Token Concatenated Vector (dim=4)

I [1.128, 1.034, 0.99, 1.03]

love [1.119, 1.049, 1.01, 1.04]

apple [1.124, 1.035, 1.02, 1.02]

phones [1.125, 1.082, 1.02, 1.02]

Head 1 (Calculated)

[1.13, 1.03]

Head 2 (Simulated)

[0.99, 1.03]

Step 9 & 10: Concatenation

Before attention, the vector for "Apple" is static. It contains all

potential meanings mixed together.

It sits in a neutral, ambiguous space.

It is equidistant from Fruits (Nature) and Tech (Digital).

The model doesn't know which meaning is correct yet.

Visualizing the Meaning: Static Embeddings

After Self-Attention, the vector updates based on context.

Because "Apple" attended strongly to "Phones", it pulls

information from the Tech cluster.

The vector physically shifts in the high-dimensional space.

It now sits firmly in the Tech semantic region.

Visualizing the Meaning: The Shift

Projections: Input is projected into Query, Key, and Value

spaces.

Scores: Attention scores determine relevance between

tokens (Q · K).

Softmax: Converts scores to probabilities.

Weighted Sum: Output is a mix of Value vectors based on

attention weights.

Multi-Head: Allows the model to capture multiple types of

relationships at once.

Key Takeaways

